바이너리를 ASCII 텍스트로 변환하는 변환기

바이너리에서 ASCII로의 변환기 예제

입력 데이터

01000101 01111000 01100001 01101101 01110000 01101100 01100101

출력 데이터

Example

바이너리를 텍스트로 변환하는 방법

바이너리 ASCII 코드를 텍스트로 변환:

  1. 바이너리 바이트 얻기
  2. 이진 바이트를 십진수로 변환
  3. ASCII 테이블에서 ASCII 코드의 문자 가져오기
  4. 다음 바이트로 계속

01000001 바이너리를 텍스트로 변환하는 방법은 무엇입니까?

ASCII 테이블 사용:
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
+25+26 20 = 64+32+1 = 97 => "아"
01000001 = 2^6+2^2 = 64+1 = 65 = '아'
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'

이진에서 ASCII 텍스트 변환 테이블

16진수 바이너리 아스키 문자
00 00000000 무효
01 00000001
02 00000010 STX
03 00000011 ETX
04 00000100 EOT
05 00000101 엔큐
06 00000110 확인
07 00000111
08 00001000 학사
09 00001001 HT
0A 00001010 LF
0B 00001011 VT
0C 00001100 FF
0D 00001101 CR
0E 00001110 그래서
0F 00001111
10 00010000 DLE
11 00010001 DC1
12 00010010 DC2
13 00010011 DC3
14 00010100 DC4
15 00010101
16 00010110 SYN
17 00010111 ETB
18 00011000 할 수있다
19 00011001 여자 이름
1A 00011010 보결
1B 00011011 ESC
1C 00011100 FS
1D 00011101 GS
1E 00011110 RS
1F 00011111 우리를
20 00100000 우주
21 00100001 !
22 00100010 "
23 00100011 #
24 00100100 $
25 00100101 %
26 00100110 &
27 00100111 '
28 00101000 (
29 00101001 )
2A 00101010 *
2B 00101011 +
2C 00101100 ,
2D 00101101 -
2E 00101110 .
2F 00101111 /
30 00110000 0
31 00110001 1
32 00110010 2
33 00110011
34 00110100 4
35 00110101 5
36 00110110 6
37 00110111 7
38 00111000 8
39 00111001 9
3A 00111010 :
3B 00111011 ;
3C 00111100 <
3D 00111101 =
3E 00111110 >
3F 00111111 ?
40 01000000 @
41 01000001 NS
42 01000010 NS
43 01000011
44 01000100 NS
45 01000101 이자형
46 01000110 NS
47 01000111 NS
48 01001000 시간
49 01001001 NS
4A 01001010 제이
4B 01001011 케이
4C 01001100
4D 01001101 미디엄
4E 01001110 N
4F 01001111 영형
50 01010000 NS
51 01010001 NS
52 01010010 NS
53 01010011 NS
54 01010100 NS
55 01010101
56 01010110 V
57 01010111
58 01011000 NS
59 01011001 와이
5A 01011010
5B 01011011 [
5C 01011100 \
5D 01011101 ]
5E 01011110 ^^
5층 01011111 _
60 01100000 `
61 01100001 NS
62 01100010 NS
63 01100011
64 01100100 NS
65 01100101 이자형
66 01100110 NS
67 01100111 NS
68 01101000 시간
69 01101001 NS
6A 01101010 제이
6B 01101011 케이
6C 01101100
6D 01101101 미디엄
6E 01101110 N
6층 01101111 o
70 01110000 p
71 01110001 q
72 01110010 r
73 01110011 s
74 01110100 t
75 01110101 u
76 01110110 v
77 01110111 w
78 01111000 x
79 01111001 y
7A 01111010 z
7B 01111011 {
7C 01111100 |
7D 01111101 }
7E 01111110 ~
7F 01111111 DEL

Binary System

The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1. 

While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.

ASCII Text

ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.

The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.