Esempi di convertitori da binario ad Ascii
Dati in ingresso
01000101 01111000 01100001 01101101 01110000 01101100 01100101
Dati di uscita
Example
Come convertire file binari in testo
Converti codice ASCII binario in testo:
- Ottieni byte binario
- Converti byte binario in decimale
- Ottieni il carattere del codice ASCII dalla tabella ASCII
- Continua con il prossimo byte
Come convertire 01000001 binario in testo?
Utilizzare la tabella ASCII:
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
011000012 = 26+25+ 20 = 64+32+1 = 97 => "a"
01000001 = 2^6+2^2 = 64+1 = 65 = 'A'
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'
Tabella di conversione del testo binario in ASCII
Esadecimale | Binario | Carattere ASCII |
---|---|---|
00 | 00000000 | NUL |
01 | 0000001 | SOH |
02 | 00000010 | STX |
03 | 00000011 | ETX |
04 | 00000100 | EOT |
05 | 00000101 | ENQ |
06 | 00000110 | ACK |
07 | 00000111 | BEL |
08 | 00001000 | BS |
09 | 00001001 | HT |
0A | 00001010 | LF |
0B | 00001011 | VT |
0C | 00001100 | FF |
0D | 00001101 | CR |
0E | 00001110 | COSÌ |
0F | 00001111 | SI |
10 | 00010000 | DLE |
11 | 00010001 | DC1 |
12 | 00010010 | DC2 |
13 | 00010011 | DC3 |
14 | 00010100 | DC4 |
15 | 00010101 | NAK |
16 | 00010110 | SYN |
17 | 00010111 | ETB |
18 | 00011000 | POTERE |
19 | 00011001 | EM |
1A | 00011010 | SUB |
1B | 00011011 | ESC |
1C | 00011100 | FS |
1D | 00011101 | GS |
1E | 00011110 | RS |
1F | 00011111 | noi |
20 | 0010000 | Spazio |
21 | 00100001 | ! |
22 | 00100010 | " |
23 | 00100011 | # |
24 | 00100100 | $ |
25 | 00100101 | % |
26 | 00100110 | & |
27 | 00100111 | ' |
28 | 00101000 | ( |
29 | 00101001 | ) |
2A | 00101010 | * |
2B | 00101011 | + |
2C | 00101100 | , |
2D | 00101101 | - |
2E | 00101110 | . |
2F | 00101111 | / |
30 | 00110000 | 0 |
31 | 0010001 | 1 |
32 | 00110010 | 2 |
33 | 00110011 | 3 |
34 | 00110100 | 4 |
35 | 00110101 | 5 |
36 | 00110110 | 6 |
37 | 00110111 | 7 |
38 | 00111000 | 8 |
39 | 00111001 | 9 |
3A | 00111010 | : |
3B | 00111011 | ; |
3C | 00111100 | < |
3D | 00111101 | = |
3E | 00111110 | > |
3F | 00111111 | ? |
40 | 01000000 | @ |
41 | 01000001 | UN |
42 | 01000010 | B |
43 | 01000011 | C |
44 | 01000100 | D |
45 | 01000101 | E |
46 | 01000110 | F |
47 | 01000111 | G |
48 | 01001000 | h |
49 | 01001001 | io |
4A | 01001010 | J |
4B | 01001011 | K |
4C | 01001100 | l |
4D | 01001101 | m |
4E | 01001110 | n |
4F | 01001111 | oh |
50 | 01010000 | P |
51 | 01010001 | Q |
52 | 01010010 | R |
53 | 01010011 | S |
54 | 01010100 | T |
55 | 01010101 | tu |
56 | 01010110 | V |
57 | 01010111 | W |
58 | 01011000 | X |
59 | 01011001 | sì |
5A | 01011010 | Z |
5B | 01011011 | [ |
5C | 01011100 | \ |
5 D | 01011101 | ] |
5E | 01011110 | ^ |
5F | 01011111 | _ |
60 | 01100000 | ` |
61 | 01100001 | un |
62 | 01100010 | B |
63 | 01100011 | C |
64 | 01100100 | D |
65 | 01100101 | e |
66 | 01100110 | F |
67 | 01100111 | G |
68 | 01101000 | h |
69 | 01101001 | io |
6A | 01101010 | J |
6B | 01101011 | K |
6C | 01101100 | io |
6D | 01101101 | m |
6E | 01101110 | n |
6F | 01101111 | o |
70 | 01110000 | p |
71 | 01110001 | q |
72 | 01110010 | r |
73 | 01110011 | s |
74 | 01110100 | t |
75 | 01110101 | u |
76 | 01110110 | v |
77 | 01110111 | w |
78 | 01111000 | x |
79 | 01111001 | y |
7A | 01111010 | z |
7B | 01111011 | { |
7C | 01111100 | | |
7D | 01111101 | } |
7E | 01111110 | ~ |
7F | 01111111 | DEL |
Binary System
The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.
While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.
ASCII Text
ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.
The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.