Exemples de convertisseur binaire vers Ascii
Des données d'entrée
01000101 01111000 01100001 01101101 01110000 01101100 01100101
Des données de sortie
Example
Comment convertir binaire en texte
Convertissez le code ASCII binaire en texte :
- Obtenir l'octet binaire
- Convertir l'octet binaire en décimal
- Obtenir le caractère du code ASCII de la table ASCII
- Continuer avec l'octet suivant
Comment convertir 01000001 binaire en texte ?
Utiliser le tableau ASCII :
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
011000012 = 26+25+ 20 = 64+32+1 = 97 => "a"
01000001 = 2^6+2^2 = 64+1 = 65 = 'A'
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'
Table de conversion de texte binaire vers ASCII
Hexadécimal | Binaire | Caractère ASCII |
---|---|---|
00 | 00000000 | NUL |
01 | 0000001 | SOH |
02 | 0000010 | STX |
03 | 00000011 | ETX |
04 | 00000100 | EOT |
05 | 00000101 | ENQ |
06 | 00000110 | ACK |
07 | 00000111 | BEL |
08 | 00001000 | BS |
09 | 00001001 | HT |
0A | 00001010 | LF |
0B | 00001011 | Vermont |
0C | 00001100 | FF |
0D | 00001101 | RC |
0E | 00001110 | DONC |
0F | 00001111 | SI |
dix | 00010000 | DLE |
11 | 00010001 | DC1 |
12 | 00010010 | DC2 |
13 | 00010011 | DC3 |
14 | 00010100 | DC4 |
15 | 00010101 | NAK |
16 | 00010110 | SYN |
17 | 00010111 | ETB |
18 | 00011000 | POUVEZ |
19 | 00011001 | EM |
1A | 00011010 | SOUS |
1B | 00011011 | ESC |
1C | 00011100 | FS |
1D | 00011101 | SG |
1E | 00011110 | RS |
1F | 00011111 | nous |
20 | 0010000 | Espacer |
21 | 00100001 | ! |
22 | 00100010 | " |
23 | 00100011 | # |
24 | 00100100 | $ |
25 | 00100101 | % |
26 | 00100110 | & |
27 | 00100111 | ' |
28 | 00101000 | ( |
29 | 00101001 | ) |
2A | 00110010 | * |
2B | 00101011 | + |
2C | 00101100 | , |
2D | 00101101 | - |
2E | 00101110 | . |
2F | 00101111 | / |
30 | 00110000 | 0 |
31 | 00110001 | 1 |
32 | 00110010 | 2 |
33 | 00110011 | 3 |
34 | 00110100 | 4 |
35 | 00110101 | 5 |
36 | 00110110 | 6 |
37 | 00110111 | 7 |
38 | 00111000 | 8 |
39 | 00111001 | 9 |
3A | 00111010 | : |
3B | 00111011 | ; |
3C | 00111100 | < |
3D | 00111101 | = |
3E | 00111110 | > |
3F | 00111111 | ? |
40 | 01000000 | @ |
41 | 01000001 | UNE |
42 | 01000010 | B |
43 | 01000011 | C |
44 | 01000100 | ré |
45 | 01000101 | E |
46 | 01000110 | F |
47 | 01000111 | g |
48 | 01001000 | H |
49 | 01001001 | je |
4A | 01001010 | J |
4B | 01001011 | K |
4C | 01001100 | L |
4D | 01001101 | M |
4E | 01001110 | N |
4F | 01001111 | O |
50 | 01010000 | P |
51 | 01100001 | Q |
52 | 0101010 | R |
53 | 01010011 | S |
54 | 01010100 | T |
55 | 01010101 | U |
56 | 01010110 | V |
57 | 01010111 | W |
58 | 01011000 | X |
59 | 01011001 | Oui |
5A | 01011010 | Z |
5B | 01011011 | [ |
5C | 01011100 | \ |
5D | 01011101 | ] |
5E | 01011110 | ^ |
5F | 01011111 | _ |
60 | 01100000 | ` |
61 | 01100001 | une |
62 | 01100010 | b |
63 | 01100011 | c |
64 | 01100100 | ré |
65 | 01100101 | e |
66 | 01100110 | F |
67 | 01100111 | g |
68 | 01101000 | h |
69 | 01101001 | je |
6A | 01101010 | j |
6B | 01101011 | k |
6C | 01101100 | je |
6D | 01101101 | m |
6E | 01101110 | m |
6F | 01101111 | o |
70 | 01110000 | p |
71 | 01110001 | q |
72 | 01110010 | r |
73 | 01110011 | s |
74 | 01110100 | t |
75 | 01110101 | u |
76 | 01110110 | v |
77 | 01110111 | w |
78 | 01111000 | x |
79 | 01111001 | y |
7A | 01111010 | z |
7B | 01111011 | { |
7C | 01111100 | | |
7D | 01111101 | } |
7E | 01111110 | ~ |
7F | 01111111 | DEL |
Binary System
The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.
While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.
ASCII Text
ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.
The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.