Dvejetainio į Ascii konverterio pavyzdžiai
Įvesties duomenys
01000101 01111000 01100001 01101101 01110000 01101100 01100101
Išvesties duomenys
Example
Kaip dvejetainį konvertuoti į tekstą
Konvertuoti dvejetainį ASCII kodą į tekstą:
- Gaukite dvejetainį baitą
- Konvertuoti dvejetainį baitą į dešimtainį
- Gaukite ASCII kodo simbolį iš ASCII lentelės
- Tęskite su kitu baitu
Kaip dvejetainį 01000001 konvertuoti į tekstą?
Naudokite ASCII lentelę:
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
011000012 = 2+6 20 = 64 + 32 + 1 = 97 => "a"
01000001 = 2^6 + 2^2 = 64 + 1 = 65 = "A"
00110000 = 2^5 + 2^4 = 2^5 + 2^4 = 32 + 16 = 48 = "0"
Dvejetainė į ASCII teksto konvertavimo lentelė
Šešioliktainis | Dvejetainis | ASCII simbolis |
---|---|---|
00 | 00000000 | NUL |
01 | 00000001 | SOH |
02 | 00000010 | STX |
03 | 00000011 | ETX |
04 | 00000100 | EOT |
05 | 00000101 | ENQ |
06 | 00000110 | ACK |
07 | 00000111 | BEL |
08 | 00001000 | BS |
09 | 00001001 | HT |
0A | 00001010 | LF |
0B | 00001011 | VT |
0C | 00001100 | FF |
0D | 00001101 | CR |
0E | 00001110 | TAIP |
0F | 00001111 | SI |
10 | 00010000 | DLE |
11 | 00010001 | DC1 |
12 | 00010010 | DC2 |
13 | 00010011 | DC3 |
14 | 00010100 | DC4 |
15 | 00010101 | NAK |
16 | 00010110 | SYN |
17 | 00010111 | ETB |
18 | 00011000 | GALI |
19 | 00011001 | EM |
1A | 00011010 | SUB |
1B | 00011011 | ESC |
1C | 00011100 | FS |
1D | 00011101 | GS |
1E | 00011110 | RS |
1F | 00011111 | JAV |
20 | 00100000 | Erdvė |
21 | 00100001 | ! |
22 | 00100010 | " |
23 | 00100011 | # |
24 | 00100100 | $ |
25 | 00100101 | % |
26 | 00100110 | & |
27 | 00100111 | ' |
28 | 00101000 | ( |
29 | 00101001 | ) |
2A | 00101010 | * |
2B | 00101011 | + |
2C | 00101100 | , |
2D | 00101101 | - |
2E | 00101110 | . |
2F | 00101111 | / |
30 | 00110000 | 0 |
31 | 00110001 | 1 |
32 | 00110010 | 2 |
33 | 00110011 | 3 |
34 | 00110100 | 4 |
35 | 00110101 | 5 |
36 | 00110110 | 6 |
37 | 00110111 | 7 |
38 | 00111000 | 8 |
39 | 00111001 | 9 |
3A | 00111010 | : |
3B | 00111011 | ; |
3C | 00111100 | < |
3D | 00111101 | = |
3E | 00111110 | > |
3F | 00111111 | ? |
40 | 01000000 | @ |
41 | 01000001 | A |
42 | 01000010 | B |
43 | 01000011 | C |
44 | 01000100 | D |
45 | 01000101 | E |
46 | 01000110 | F |
47 | 01000111 | G |
48 | 01001000 | H |
49 | 01001001 | I |
4A | 01001010 | J |
4B | 01001011 | K |
4C | 01001100 | L |
4D | 01001101 | M |
4E | 01001110 | N |
4F | 01001111 | O |
50 | 01010000 | P |
51 | 01010001 | Q |
52 | 01010010 | R |
53 | 01010011 | S |
54 | 01010100 | T |
55 | 01010101 | U |
56 | 01010110 | V |
57 | 01010111 | W |
58 | 01011000 | X |
59 | 01011001 | Y |
5A | 01011010 | Z |
5B | 01011011 | [ |
5C | 01011100 | \ |
5D | 01011101 | ] |
5E | 01011110 | ^ |
5F | 01011111 | _ |
60 | 01100000 | ` |
61 | 01100001 | a |
62 | 01100010 | b |
63 | 01100011 | c |
64 | 01100100 | d |
65 | 01100101 | e |
66 | 01100110 | f |
67 | 01100111 | g |
68 | 01101000 | h |
69 | 01101001 | i |
6A | 01101010 | j |
6B | 01101011 | k |
6C | 01101100 | l |
6D | 01101101 | m |
6E | 01101110 | n |
6F | 01101111 | o |
70 | 01110000 | p |
71 | 01110001 | q |
72 | 01110010 | r |
73 | 01110011 | s |
74 | 01110100 | t |
75 | 01110101 | u |
76 | 01110110 | v |
77 | 01110111 | w |
78 | 01111000 | x |
79 | 01111001 | y |
7A | 01111010 | z |
7B | 01111011 | { |
7C | 01111100 | | |
7D | 01111101 | } |
7E | 01111110 | ~ |
7F | 01111111 | DEL |
Binary System
The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.
While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.
ASCII Text
ASCII (American Standard Code for Information Interchange) yra vienas iš labiausiai paplitusių simbolių kodavimo standartų. Iš pradžių sukurtas iš telegrafinių kodų, ASCII dabar plačiai naudojamas elektroniniam ryšiui tekstui perduoti.
Originalus ASCII yra pagrįstas 128 simboliais. Tai 26 angliškos abėcėlės raidės (ir mažosiomis, ir didžiosiomis raidėmis); skaičiai nuo 0 iki 9; ir įvairūs skyrybos ženklai. ASCII kode kiekvienam iš šių simbolių priskiriamas dešimtainis skaičius nuo 0 iki 127. Pavyzdžiui, ASCII didžiosios raidės A yra 65, o mažosios raidės a yra 97.