Konwerter binarny na tekst ASCII

Przykłady konwertera binarnego na ASCII

Dane wejściowe

01000101 01111000 01100001 01101101 01110000 01101100 01100101

Dane wyjściowe

Example

Jak przekonwertować plik binarny na tekst

Konwertuj binarny kod ASCII na tekst:

  1. Uzyskaj bajt binarny
  2. Konwertuj bajt binarny na dziesiętny
  3. Uzyskaj znak kodu ASCII z tabeli ASCII
  4. Kontynuuj z następnym bajtem

Jak przekonwertować 01000001 binarny na tekst?

Użyj tabeli ASCII:
010100002 = 26+24 = 64+16 = 80 => „P”
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => „l”
011000012 = 26+25+ 20 = 64+32+1 = 97 => "a"
01000001 = 2^6+2^2 = 64+1 = 65 = 'A'
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'

Tabela konwersji tekstu binarnego na ASCII

Szesnastkowy Dwójkowy Znak ASCII
00 00000000 NUL
01 00000001 SOH
02 00000010 STX
03 00000011 ETX
04 00000100 EOT
05 00000101 ENQ
06 00000110 POTWIERDZ
07 00000111 BEL
08 00001000 BS
09 00001001 HT
0A 00001010 LF
0B 00001011 VT
0C 00001100 FF
0D 00001101 CR
0E 00001110 WIĘC
0F 00001111 SI
10 00010000 DLE
11 00010001 DC1
12 00010010 DC2
13 00010011 DC3
14 00010100 DC4
15 00010101 NAK
16 00010110 SYN
17 00010111 ETB
18 00011000 MÓC
19 00011001 EM
1A 00011010 POD
1B 00011011 WYJŚCIE
1C 00011100 FS
1D 00011101 GS
1E 00011110 RS
1F 00011111 nas
20 00100000 Przestrzeń
21 00100001 !
22 00100010 "
23 00100011 #
24 00100100 $
25 00100101 %
26 00100110 &
27 00100111 '
28 00101000 (
29 00101001 )
2A 00101010 *
2B 00101011 +
2C 00101100 ,
2D 00101101 -
2E 00101110 .
2F 00101111 /
30 00110000 0
31 0010001 1
32 00110010 2
33 00110011 3
34 00110100 4
35 00110101 5
36 00110110 6
37 00110111 7
38 00111000 8
39 00111001 9
3A 00111010 :
3B 00111011 ;
3C 00111100 <
3D 00111101 =
3E 00111110 >
3F 00111111 ?
40 01000000 @
41 01000001 A
42 01000010 b
43 0000011 C
44 01000100 D
45 01000101 mi
46 01000110 F
47 01000111 g
48 01001000 h
49 01001001 i
4A 01001010 J
4B 01001011 K
4C 01001100 L
4D 01001101 m
4E 01001110 n
4F 01001111 O
50 01010000 P
51 01010001 Q
52 01010010 r
53 01010011 S
54 01010100 T
55 01010101 U
56 01010110 V
57 01010111 W
58 01011000 x
59 01011001 Y
5A 01011010 Z
5B 01011011 [
5C 01011100 \
5D 01011101 ]
5E 01011110 ^
5F 01011111 _
60 01100000 `
61 01100001 a
62 01100010 b
63 01100011 C
64 01100100 D
65 01100101 mi
66 01100110 F
67 01100111 g
68 01101000 h
69 01101001 i
6A 01101010 J
6B 01101011 k
6C 01101100 ja
6D 01101101 m
6E 01101110 n
6F 01101111 o
70 01110000 p
71 01110001 q
72 01110010 r
73 01110011 s
74 01110100 t
75 01110101 u
76 01110110 v
77 01110111 w
78 01111000 x
79 01111001 y
7A 01111010 z
7B 01111011 {
7C 01111100 |
7D 01111101 }
7E 01111110 ~
7F 01111111 DEL

Binary System

The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1. 

While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.

ASCII Text

ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.

The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.