Exemple de convertoare binar în Ascii
Date de intrare
01000101 01111000 01100001 01101101 01110000 01101100 01100101
Date de ieșire
Example
Cum se transformă binar în text
Convertiți codul ASCII binar în text:
- Obține octet binar
- Conversia octet binar în zecimal
- Obțineți caracterul codului ASCII din tabelul ASCII
- Continuați cu octetul următor
Cum se convertesc 01000001 binar în text?
Utilizați tabelul ASCII:
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
011000012 = 26+25 20 = 64+32+1 = 97 => „a”
01000001 = 2^6+2^2 = 64+1 = 65 = „A”
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'
Tabel de conversie text binar în ASCII
hexazecimal | Binar | Caracter ASCII |
---|---|---|
00 | 00000000 | NUL |
01 | 00000001 | DECI H |
02 | 00000010 | STX |
03 | 00000011 | ETX |
04 | 00000100 | EOT |
05 | 00000101 | ENQ |
06 | 00000110 | ACK |
07 | 00000111 | BEL |
08 | 00001000 | BS |
09 | 00001001 | HT |
0A | 00001010 | LF |
0B | 00001011 | VT |
0C | 00001100 | FF |
0D | 00001101 | CR |
0E | 00001110 | ASA DE |
0F | 00001111 | SI |
10 | 00010000 | DLE |
11 | 00010001 | DC1 |
12 | 00010010 | DC2 |
13 | 00010011 | DC3 |
14 | 00010100 | DC4 |
15 | 00010101 | NAK |
16 | 00010110 | SYN |
17 | 00010111 | ETB |
18 | 00011000 | POATE SA |
19 | 00011001 | EM |
1A | 00011010 | SUB |
1B | 00011011 | ESC |
1C | 00011100 | FS |
1D | 00011101 | GS |
1E | 00011110 | RS |
1F | 00011111 | S.U.A. |
20 | 00100000 | Spaţiu |
21 | 00100001 | ! |
22 | 00100010 | " |
23 | 00100011 | # |
24 | 00100100 | $ |
25 | 00100101 | % |
26 | 00100110 | & |
27 | 00100111 | ' |
28 | 00101000 | ( |
29 | 00101001 | ) |
2A | 00101010 | * |
2B | 00101011 | + |
2C | 00101100 | , |
2D | 00101101 | - |
2E | 00101110 | . |
2F | 00101111 | / |
30 | 00110000 | 0 |
31 | 00110001 | 1 |
32 | 00110010 | 2 |
33 | 00110011 | 3 |
34 | 00110100 | 4 |
35 | 00110101 | 5 |
36 | 00110110 | 6 |
37 | 00110111 | 7 |
38 | 00111000 | 8 |
39 | 00111001 | 9 |
3A | 00111010 | : |
3B | 00111011 | ; |
3C | 00111100 | < |
3D | 00111101 | = |
3E | 00111110 | > |
3F | 00111111 | ? |
40 | 01000000 | @ |
41 | 01000001 | A |
42 | 01000010 | B |
43 | 01000011 | C |
44 | 01000100 | D |
45 | 01000101 | E |
46 | 01000110 | F |
47 | 01000111 | G |
48 | 01001000 | H |
49 | 01001001 | eu |
4A | 01001010 | J |
4B | 01001011 | K |
4C | 01001100 | L |
4D | 01001101 | M |
4E | 01001110 | N |
4F | 01001111 | O |
50 | 01010000 | P |
51 | 01010001 | Q |
52 | 01010010 | R |
53 | 01010011 | S |
54 | 01010100 | T |
55 | 01010101 | U |
56 | 01010110 | V |
57 | 01010111 | W |
58 | 01011000 | X |
59 | 01011001 | Y |
5A | 01011010 | Z |
5B | 01011011 | [ |
5C | 01011100 | \ |
5D | 01011101 | ] |
5E | 01011110 | ^ |
5F | 01011111 | _ |
60 | 01100000 | ` |
61 | 01100001 | A |
62 | 01100010 | b |
63 | 01100011 | c |
64 | 01100100 | d |
65 | 01100101 | e |
66 | 01100110 | f |
67 | 01100111 | g |
68 | 01101000 | h |
69 | 01101001 | i |
6A | 01101010 | j |
6B | 01101011 | k |
6C | 01101100 | l |
6D | 01101101 | m |
6E | 01101110 | n |
6F | 01101111 | o |
70 | 01110000 | p |
71 | 01110001 | q |
72 | 01110010 | r |
73 | 01110011 | s |
74 | 01110100 | t |
75 | 01110101 | u |
76 | 01110110 | v |
77 | 01110111 | w |
78 | 01111000 | x |
79 | 01111001 | y |
7A | 01111010 | z |
7B | 01111011 | { |
7C | 01111100 | | |
7D | 01111101 | } |
7E | 01111110 | ~ |
7F | 01111111 | DEL |
Binary System
The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.
While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.
ASCII Text
ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.
The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.