Voorbeelden van binaire naar Ascii-converter
Invoergegevens
01000101 01111000 01100001 01101101 01110000 01101100 01100101
Uitvoergegevens
Example
Hoe binair naar tekst te converteren
Converteer binaire ASCII-code naar tekst:
- Binaire byte ophalen
- Converteer binaire byte naar decimaal
- Teken van ASCII-code ophalen uit ASCII-tabel
- Ga verder met volgende byte
Hoe 01000001 binair naar tekst te converteren?
Gebruik ASCII-tabel:
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
011000012 = 26+25+ 20 = 64+32+1 = 97 => "a"
01000001 = 2^6+2^2 = 64+1 = 65 = 'A'
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'
Binaire naar ASCII-tekstconversietabel
Hexadecimaal | binair | ASCII-teken |
---|---|---|
00 | 00000000 | NUL |
01 | 00000001 | SOH |
02 | 00000010 | STX |
03 | 00000011 | ETX |
04 | 00000100 | EOT |
05 | 00000101 | ENQ |
06 | 00000110 | ACK |
07 | 00000111 | BEL |
08 | 00001000 | BS |
09 | 00001001 | HT |
0A | 0000010 | LF |
0B | 00001011 | VT |
0C | 00001100 | FF |
0D | 00001101 | CR |
0E | 00001110 | DUS |
0F | 00001111 | SI |
10 | 00010000 | DLE |
11 | 00010001 | DC1 |
12 | 00010010 | DC2 |
13 | 00010011 | DC3 |
14 | 00010100 | DC4 |
15 | 00010101 | NAK |
16 | 00010110 | SYN |
17 | 00010111 | ETB |
18 | 00011000 | KAN |
19 | 00011001 | EM |
1A | 00011010 | SUB |
1B | 00011011 | ESC |
1C | 00011100 | FS |
1D | 00011101 | GS |
1E | 00011110 | RS |
1F | 00011111 | ons |
20 | 0010000 | Ruimte |
21 | 00100001 | ! |
22 | 00100010 | " |
23 | 00100011 | # |
24 | 00100100 | $ |
25 | 00100101 | % |
26 | 00100110 | & |
27 | 00100111 | ' |
28 | 00101000 | ( |
29 | 00101001 | ) |
2A | 00101010 | * |
2B | 0001011 | + |
2C | 00101100 | , |
2D | 00101101 | - |
2E | 00101110 | . |
2F | 00101111 | / |
30 | 00110000 | 0 |
31 | 00110001 | 1 |
32 | 00110010 | 2 |
33 | 00110011 | 3 |
34 | 00110100 | 4 |
35 | 00110101 | 5 |
36 | 00110110 | 6 |
37 | 00110111 | 7 |
38 | 00111000 | 8 |
39 | 0011001 | 9 |
3A | 0011010 | : |
3B | 00111011 | ; |
3C | 00111100 | < |
3D | 00111101 | = |
3E | 00111110 | > |
3F | 00111111 | ? |
40 | 01000000 | @ |
41 | 01000001 | EEN |
42 | 01000010 | B |
43 | 01000011 | C |
44 | 01000100 | NS |
45 | 01000101 | E |
46 | 01000110 | F |
47 | 01000111 | G |
48 | 01001000 | H |
49 | 0100001 | l |
4A | 0100010 | J |
4B | 01001011 | K |
4C | 01001100 | L |
4D | 01001101 | m |
4E | 01001110 | N |
4F | 01001111 | O |
50 | 01010000 | P |
51 | 0010001 | Q |
52 | 0010010 | R |
53 | 01010011 | S |
54 | 01010100 | t |
55 | 01010101 | u |
56 | 01010110 | V |
57 | 01010111 | W |
58 | 01011000 | x |
59 | 01011001 | ja |
5A | 0101010 | Z |
5B | 01011011 | [ |
5C | 01011100 | \ |
5D | 01011101 | ] |
5E | 01011110 | ^ |
5F | 01011111 | _ |
60 | 01100000 | ` |
61 | 01100001 | een |
62 | 01100010 | B |
63 | 01100011 | C |
64 | 01100100 | NS |
65 | 01100101 | e |
66 | 01100110 | F |
67 | 01100111 | G |
68 | 01101000 | H |
69 | 01101001 | l |
6A | 01101010 | J |
6B | 01101011 | k |
6C | 01101100 | ik |
6D | 01101101 | m |
6E | 01101110 | N |
6F | 01101111 | o |
70 | 01110000 | p |
71 | 01110001 | q |
72 | 01110010 | r |
73 | 01110011 | s |
74 | 01110100 | t |
75 | 01110101 | u |
76 | 01110110 | v |
77 | 01110111 | w |
78 | 01111000 | x |
79 | 01111001 | y |
7A | 01111010 | z |
7B | 01111011 | { |
7C | 01111100 | | |
7D | 01111101 | } |
7E | 01111110 | ~ |
7F | 01111111 | DEL |
Binary System
The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.
While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.
ASCII Text
ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.
The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.