Binair naar Ascii-tekstconverter

Voorbeelden van binaire naar Ascii-converter

Invoergegevens

01000101 01111000 01100001 01101101 01110000 01101100 01100101

Uitvoergegevens

Example

Hoe binair naar tekst te converteren

Converteer binaire ASCII-code naar tekst:

  1. Binaire byte ophalen
  2. Converteer binaire byte naar decimaal
  3. Teken van ASCII-code ophalen uit ASCII-tabel
  4. Ga verder met volgende byte

Hoe 01000001 binair naar tekst te converteren?

Gebruik ASCII-tabel:
010100002 = 26+24 = 64+16 = 80 => "P"
011011002 = 26+25+23+22 = 64+32+8+4 = 108 => "l"
011000012 = 26+25+ 20 = 64+32+1 = 97 => "a"
01000001 = 2^6+2^2 = 64+1 = 65 = 'A'
00110000 = 2^5+2^4 = 2^5+2^4 = 32+16 = 48 = '0'

Binaire naar ASCII-tekstconversietabel

Hexadecimaal binair ASCII-teken
00 00000000 NUL
01 00000001 SOH
02 00000010 STX
03 00000011 ETX
04 00000100 EOT
05 00000101 ENQ
06 00000110 ACK
07 00000111 BEL
08 00001000 BS
09 00001001 HT
0A 0000010 LF
0B 00001011 VT
0C 00001100 FF
0D 00001101 CR
0E 00001110 DUS
0F 00001111 SI
10 00010000 DLE
11 00010001 DC1
12 00010010 DC2
13 00010011 DC3
14 00010100 DC4
15 00010101 NAK
16 00010110 SYN
17 00010111 ETB
18 00011000 KAN
19 00011001 EM
1A 00011010 SUB
1B 00011011 ESC
1C 00011100 FS
1D 00011101 GS
1E 00011110 RS
1F 00011111 ons
20 0010000 Ruimte
21 00100001 !
22 00100010 "
23 00100011 #
24 00100100 $
25 00100101 %
26 00100110 &
27 00100111 '
28 00101000 (
29 00101001 )
2A 00101010 *
2B 0001011 +
2C 00101100 ,
2D 00101101 -
2E 00101110 .
2F 00101111 /
30 00110000 0
31 00110001 1
32 00110010 2
33 00110011 3
34 00110100 4
35 00110101 5
36 00110110 6
37 00110111 7
38 00111000 8
39 0011001 9
3A 0011010 :
3B 00111011 ;
3C 00111100 <
3D 00111101 =
3E 00111110 >
3F 00111111 ?
40 01000000 @
41 01000001 EEN
42 01000010 B
43 01000011 C
44 01000100 NS
45 01000101 E
46 01000110 F
47 01000111 G
48 01001000 H
49 0100001 l
4A 0100010 J
4B 01001011 K
4C 01001100 L
4D 01001101 m
4E 01001110 N
4F 01001111 O
50 01010000 P
51 0010001 Q
52 0010010 R
53 01010011 S
54 01010100 t
55 01010101 u
56 01010110 V
57 01010111 W
58 01011000 x
59 01011001 ja
5A 0101010 Z
5B 01011011 [
5C 01011100 \
5D 01011101 ]
5E 01011110 ^
5F 01011111 _
60 01100000 `
61 01100001 een
62 01100010 B
63 01100011 C
64 01100100 NS
65 01100101 e
66 01100110 F
67 01100111 G
68 01101000 H
69 01101001 l
6A 01101010 J
6B 01101011 k
6C 01101100 ik
6D 01101101 m
6E 01101110 N
6F 01101111 o
70 01110000 p
71 01110001 q
72 01110010 r
73 01110011 s
74 01110100 t
75 01110101 u
76 01110110 v
77 01110111 w
78 01111000 x
79 01111001 y
7A 01111010 z
7B 01111011 {
7C 01111100 |
7D 01111101 }
7E 01111110 ~
7F 01111111 DEL

Binary System

The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1. 

While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal’s off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.

ASCII Text

ASCII (American Standard Code for Information Interchange) is one of the most common character encoding standards. Originally developed from telegraphic codes, ASCII is now widely used in electronic communication for conveying text.

The original ASCII is based on 128 characters. These are the 26 letters of the English alphabet (both in lower and upper cases); numbers from 0 to 9; and various punctuation marks. In the ASCII code, each of these characters are assigned a decimal number from 0 to 127. For example, the ASCII representation of upper case A is 65 and the lower case a is 97.