Kuinka muuntaa desimaaliluku binääriksi
Muunnosvaiheet:
- Jaa luku 2:lla.
- Hanki seuraavan iteroinnin kokonaislukuosamäärä.
- Hanki binääriluvun loppuosa.
- Toista vaiheet, kunnes osamäärä on 0.
Esimerkki #1
Muunna 41 10 binääriksi:
Jako numerolla 2 | Osamäärä | Loput | Bittinen # |
---|---|---|---|
41/2 | 20 | 1 | 0 |
20/2 | 10 | 0 | 1 |
10/2 | 5 | 0 | 2 |
5/2 | 2 | 1 | 3 |
2/2 | 1 | 0 | 4 |
1/2 | 0 | 1 | 5 |
Joten 41 10 = 101 001 2
Desimaali-binäärimuunnostaulukko
Desimaaliluku | Binääriluku | Hex numero |
---|---|---|
0 | 0 | 0 |
1 | 1 | 1 |
2 | 10 | 2 |
3 | 11 | 3 |
4 | 100 | 4 |
5 | 101 | 5 |
6 | 110 | 6 |
7 | 111 | 7 |
8 | 1000 | 8 |
9 | 1001 | 9 |
10 | 1010 | A |
11 | 1011 | B |
12 | 1100 | C |
13 | 1101 | D |
14 | 1110 | E |
15 | 1111 | F |
16 | 10 000 | 10 |
17 | 10001 | 11 |
18 | 10010 | 12 |
19 | 10011 | 13 |
20 | 10100 | 14 |
21 | 10101 | 15 |
22 | 10110 | 16 |
23 | 10111 | 17 |
24 | 11 000 | 18 |
25 | 11001 | 19 |
26 | 11010 | 1A |
27 | 11011 | 1B |
28 | 11100 | 1C |
29 | 11101 | 1D |
30 | 11110 | 1E |
31 | 11111 | 1F |
32 | 100 000 | 20 |
64 | 1000000 | 40 |
128 | 10000000 | 80 |
256 | 100000000 | 100 |
Desimaalijärjestelmä
Desimaalilukujärjestelmä on yleisimmin käytetty ja vakiojärjestelmä jokapäiväisessä elämässä. Se käyttää lukua 10 kantalukunaan. Siksi siinä on 10 symbolia: Numerot 0-9; eli 0, 1, 2, 3, 4, 5, 6, 7, 8 ja 9.
Binäärijärjestelmä
Binäärilukujärjestelmä käyttää lukua 2 kantalukunaan. 2-kantaisena numerojärjestelmänä se koostuu vain kahdesta numerosta: 0 ja 1.