How to convert binary to decimal
For binary number with n digits:
dn-1 ... d3 d2 d1 d0
The decimal number is equal to the sum of binary digits (dn) times their power of 2 (2n):
decimal = d0×20 + d1×21 + d2×22 + ...
Binary to Decimal Example
Find the decimal value of 1000102:
binary number: | 1 | 0 | 0 | 0 | 1 | 0 |
---|---|---|---|---|---|---|
power of 2: | 25 | 24 | 23 | 22 | 21 | 20 |
1000102 = 1⋅25+0⋅24+0⋅23+0⋅22+1⋅21+0⋅20 = 3410
Decimal System
The decimal numeral system is the most commonly used and the standard system in daily life. It uses the number 10 as its base (radix). Therefore, it has 10 symbols: The numbers from 0 to 9; namely 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
Binary System
The binary numeral system uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.
Binary to decimal conversion table
Binary Number | Decimal Number | Hex Number |
---|---|---|
0 | 0 | 0 |
1 | 1 | 1 |
10 | 2 | 2 |
11 | 3 | 3 |
100 | 4 | 4 |
101 | 5 | 5 |
110 | 6 | 6 |
111 | 7 | 7 |
1000 | 8 | 8 |
1001 | 9 | 9 |
1010 | 10 | A |
1011 | 11 | B |
1100 | 12 | C |
1101 | 13 | D |
1110 | 14 | E |
1111 | 15 | F |
10000 | 16 | 10 |
10001 | 17 | 11 |
10010 | 18 | 12 |
10011 | 19 | 13 |
10100 | 20 | 14 |
10101 | 21 | 15 |
10110 | 22 | 16 |
10111 | 23 | 17 |
11000 | 24 | 18 |
11001 | 25 | 19 |
11010 | 26 | 1A |
11011 | 27 | 1B |
11100 | 28 | 1C |
11101 | 29 | 1D |
11110 | 30 | 1E |
11111 | 31 | 1F |
100000 | 32 | 20 |
1000000 | 64 | 40 |
10000000 | 128 | 80 |
100000000 | 256 | 100 |